skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gong, Chengyue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Protein language models, like the popular ESM2, are widely used tools for extracting evolution-based protein representations and have achieved significant success on downstream biological tasks. Representations based on sequence and structure models, however, show significant performance differences depending on the downstream task. A major open problem is to obtain representations that best capture both the evolutionary and structural properties of proteins in general. Here we introduceImplicitStructureModel(ISM), a sequence-only input model with structurally-enriched representations that outperforms state-of-the-art sequence models on several well-studied benchmarks including mutation stability assessment and structure prediction. Our key innovations are a microenvironment-based autoencoder for generating structure tokens and a self-supervised training objective that distills these tokens into ESM2’s pre-trained model. We have madeISM’s structure-enriched weights easily available: integrating ISM into any application using ESM2 requires changing only a single line of code. Our code is available athttps://github.com/jozhang97/ISM. 
    more » « less
  2. Abstract Engineering stabilized proteins is a fundamental challenge in the development of industrial and pharmaceutical biotechnologies. We present Stability Oracle: a structure-based graph-transformer framework that achieves SOTA performance on accurately identifying thermodynamically stabilizing mutations. Our framework introduces several innovations to overcome well-known challenges in data scarcity and bias, generalization, and computation time, such as: Thermodynamic Permutations for data augmentation, structural amino acid embeddings to model a mutation with a single structure, a protein structure-specific attention-bias mechanism that makes transformers a viable alternative to graph neural networks. We provide training/test splits that mitigate data leakage and ensure proper model evaluation. Furthermore, to examine our data engineering contributions, we fine-tune ESM2 representations (Prostata-IFML) and achieve SOTA for sequence-based models. Notably, Stability Oracle outperforms Prostata-IFML even though it was pretrained on 2000X less proteins and has 548X less parameters. Our framework establishes a path for fine-tuning structure-based transformers to virtually any phenotype, a necessary task for accelerating the development of protein-based biotechnologies. 
    more » « less
  3. The molecular basis of protein thermal stability is only partially understood and has major significance for drug and vaccine discovery. The lack of datasets and standardized benchmarks considerably limits learning-based discovery methods. We present \texttt{HotProtein}, a large-scale protein dataset with \textit{growth temperature} annotations of thermostability, containing K amino acid sequences and K folded structures from different species with a wide temperature range. Due to functional domain differences and data scarcity within each species, existing methods fail to generalize well on our dataset. We address this problem through a novel learning framework, consisting of () Protein structure-aware pre-training (SAP) which leverages 3D information to enhance sequence-based pre-training; () Factorized sparse tuning (FST) that utilizes low-rank and sparse priors as an implicit regularization, together with feature augmentations. Extensive empirical studies demonstrate that our framework improves thermostability prediction compared to other deep learning models. Finally, we introduce a novel editing algorithm to efficiently generate positive amino acid mutations that improve thermostability. Codes are available in https://github.com/VITA-Group/HotProtein. 
    more » « less
  4. Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforcing the label consistency between the data points and the augmented data derived from them. Our key technical contribution lies on: 1) using alpha-divergence to prioritize the regularization on data with high confidence, achieving a similar effect as FixMatch but in a more flexible fashion, and 2) proposing an optimization-based, EM-like algorithm to enforce the consistency, which enjoys better convergence than iterative regularization procedures used in recent SSL methods such as FixMatch, UDA, and MixMatch. AlphaMatch is simple and easy to implement, and consistently outperforms prior arts on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-100, STL-10. Specifically, we achieve 91.3 data per class, substantially improving over the previously best 88.7 achieved by FixMatch. 
    more » « less
  5. We propose MaxUp, an embarrassingly simple, highly effective technique for improving the generalization performance of machine learning models, especially deep neural networks. The idea is to generate a set of augmented data with some random perturbations or transforms and minimize the maximum, or worst case loss over the augmented data. By doing so, we implicitly introduce a smoothness or robustness regularization against the random perturbations, and hence improve the generation performance. For example, in the case of Gaussian perturbation, MaxUp is asymptotically equivalent to using the gradient norm of the loss as a penalty to encourage smoothness. We test MaxUp on a range of tasks, including image classification, language modeling, and adversarial certification, on which MaxUp consistently outperforms the existing best baseline methods, without introducing substantial computational overhead. In particular, we improve ImageNet classification from the state-of-the-art top-1 accuracy 85.5% without extra data to 85.8%. Code will be released soon. 
    more » « less